9.6 contid Day(2) * Review Problem 3 on pg. 585 \$ Sot it #3 Discriminant - expression under the Pormula Sign in the quadratic - helps you determine if the quadratic equation has one, two or no real # Solutions - can be positive, zero or nogative - Discriminant $\chi = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ (b 24ac) * If the discriminant is ... positive, there are two real#solutions negative, there are no real # solutions 2 ero, there is one real # solution * Keviw the Chart on pg. 585 * Review Problem 4 on pg. 586

(S) year billing J.P

* 60t it #4a) 6x-5x=7 672-5x-7=0 ba-4ac 25 + 168 since the discriminat is positive there are 2 solutions B) 6 - 4ac ba-4(a)(c) * must be a positive #, therefore 2 solutions because the = Square root of a positive has Hwo solution * A negative discrimenat has no Solution because you cannot find the Square noot of w negative. * A sero discriminat only has one Solution because the Square root of sero well only died one answer.

9-6

Enrichment

The Quadratic Formula and the Discriminant

You have used the discriminant to find the number of solutions to a quadratic equation. You can also use the discriminant to determine the number of x-intercepts of the graph of the related function.

Discriminant	Positive Discriminant $b^2 - 4ac > 0$	Discriminant is Zero $b^2 - 4ac = 0$	Negative Discriminant $b^2 - 4ac < 0$
Example	X X		*
Number of x-intercepts of graph of related function	The graph has two x-intercepts.	The graph has one <i>x</i> -intercept.	The graph has no x-intercepts.

Practice

Use the discriminant of the related quadratic equation to determine the number of x-intercepts of the graph of the function.

1.
$$y = x^2 + 4x + 5$$

2.
$$y = x^2 - x - 2$$

$$3. y = x^2 - 2x + 1$$

4.
$$y = x^2 - 4x + 13$$

5.
$$y = 2x^2 + 11x - 5$$

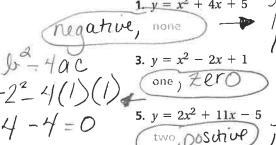
6.
$$y = 4x^2 - 17x - 15$$

7.
$$y = x^2 - 9x$$

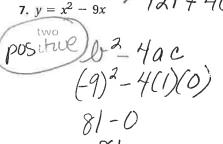
8.
$$y = 3x^2 - 7x + 5$$

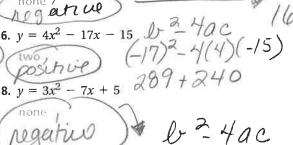
9-6

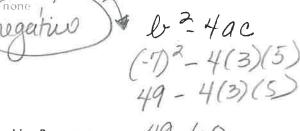
Enrichment


The Quadratic Formula and the Discriminant

You have used the discriminant to find the number of solutions to a quadratic equation. You can also use the discriminant to determine the number of *x*-intercepts of the graph of the related function.


Discriminant	Positive Discriminant $b^2 - 4ac > 0$	Discriminant is Zero $b^2 - 4ac = 0$	Negative Discriminant $b^2 - 4ac < 0$
Example	*	*	*
Number of x-intercepts of graph of related function	The graph has two v	The graph has one servintercept.	The graph has no x-intercepts.


Practice


Use the discriminant of the related quadratic equation to determine the number of x-intercepts of the graph of the function.

5.
$$y = 2x^2 + 11x - 5$$
 b. 3-Hac
two positive $11^2 - 4(2)(-5)$

	33	
		l i
w.		