Algebra Chapter 8.1- Skeleton Notes

Review: Simplify each problem then state the exponent rule that supports your answer.

1. x(x⁴) _____ Rule:

2. $(x^4)^2$ _____ Rule:

Define the following vocabulary using the Glossary in your textbook, section 8.1 or your math notes. Then provide an example of each vocabulary term.

Factor-	
Coefficient –	
Variable-	
Constant-	
Monomial-	
Polynomial-	
Binomial-	
Trinomial-	

What is the difference between a term and a factor?

Degree of a monomial/term :	
Problem/Got its #1	

egree of a Polynomial :			
Polynomial	Terms	Degree of Term(s)	Degree of Polynomia

Why is it important to know the degree of each term and the degree of the polynomial?

Degree of a Polynomial	Number of Terms in a Polynomial
oblem/ Got its #3	

Subtracting Polynomials

Read through "Problem 5: Subtracting Polynomials" on Page 489 of your textbook, What are the two polynomials given? Write below. There are two methods provided to perform subtraction of polynomials. Demonstrate how to

	Method 2			
od.	Method 1			
use each method.		Explain in words	Demonstrate the math	Check your preferred

Ī

Solve the Got It? #5. Write the problem, show your work as you solve, and circle your answer,

Finally, ensure you can explain this concept to your fellow group members. Think about how you can demonstrate the addition of polynomials. Be sure to include both methods. Do you think there are any misconceptions that should be noted? What should students look out for? Can you come up with a trick to remember a procedure?

Adding Polynomials

Read through "Problem 4: Adding Polynomials" on Page 488 of your textbook. What are the two polynomials given? Write below. There are two methods provided to perform addition of polynomials. Demonstrate how to use

ach method.	Method 1	Method 2	
Explain in words			
Demonstrate the math			
Check your preferred method			

Solve the Got It? #4. Write the problem, show your work as you solve, and circle your answer

Finally, ensure you can explain this concept to your fellow group members. Think about how you can demonstrate the addition of polynomials. Be sure to include both methods. Do you think there are any misconceptions that should be noted? What should students look out for? Can you come up with a trick to remember a procedure?

6

Algebra Chapter 8.1- Skeleton Notes

Review: Simplify each problem then state the exponent rule that supports your answer.

1. $x(x^4) = \chi^5$ Rule: When the same base is being multiplied, ADD the exponents. 2. $(x^4)^2 \xrightarrow{\chi^8}$ Rule: Power of a Power, multiply the exponents.

Define the following vocabulary using the Glossary in your textbook, section 8.1 or your math notes. Then provide an example of each vocabulary term.

2.5=10 or x2(x3)=x5 Factor- numbers or Variables that are multiplied together resulting Coefficient -2x, 4abc, -7ynumerical factor of a term Variablerepresents an unknown value x, y, z $2, \frac{1}{2}, 0.75, -4$ 4, $y, -3x^4, \frac{\pi}{2}, \frac{\pi}{2}$ Constanta number by itself Monomial- a #, variable or a product of a # and 1 or more variables with whole # exponents (also called a term) Polynomial-(polynomial (polynomial terms) (polynomial (polynomial terms) a monomial or a sum of monomials Binomiala sum of exactly 2 terms 5xy + 24 Trinomiala sum of exactly 3 terms 2x2 + 7x+2 What is the difference between a term and a factor? * Do NOT confuse the 2! * Terms - separated by ()() Aterm with Atermwith Jonly a factors Atermwith * Factors are multiplied Degree of a monomial/term: sum of the exponents of its variables Problem/Got its #1 A) Bxy (degree of term=2; x'y'=> 1+1=2) B) - Ty 4 2 (degree of term=5; y+2'=> ++1=5) C) Il (degree of term = 0; no variables => 0)

Degree of a Polynomial: highest degree of its terms			
Nighes	st algre	e or its in	
Polynomial Terms		Degree of Term(s)	Degree of Polynomial
5mn²	1 Term	3	3
- 4xy = 3x = 5 (= 1xy = 3x,5)		4,2,0	4
3a+7ab-2a2b+16+4a 4Terms (7a,7ab)		1,2,3,0	A 3
Nhy is it important to know the degr	$-2a^{2}b, 1b$ ee of each term ar	nd the degree of the polyn	omial?
* you can write then classify +	the polyn	nomial in H omial.	re correct was
" Stand form -	degree of	its terms in	decreasing o
* Standard Total order in a tem, always write -if there are multiple variables in a tem, always write them in alphabetical order			
naming a polynomial based on its degree & # ofterms			
Degree of a Polynon	nial		ns in a Polynomial
Constant - a # by itself -a deque of zero 7 or 7x°		Monomial -	1 term
Linear - 1st degree - astraight line v		Binomial	- 2 terms
Quadratic - 2nd de	gree	Trinomial.	- 3tems
-parabola when Cubic - 3rd degi	e ce	Polynomial	- Hormore terms
4th degree			
2th degree			
Problem/Got its #3 A) $8\chi^2 + 2\chi - 3$ (quadratic trinomial)			
B) IF allows 4	on to see	which mon	omial
B) IF allows you to see which monomial has the greatest degree & how many terms the polynomial has			
tru polynomia	<u> 145</u>		

Read through "Problem 4: Adding Polynomials" on Page 488 of your textbook. What are the two polynomials given? Write below.

-7.1x2-180x+5800 and 21x2-140x+1900

There are two methods provided to perform addition of polynomials. Demonstrate how to use each method.

each methou.		Master d D		
	Method 1	Method 2		
Explain in words	Add vertically. Line	Add horizontally.		
Words	up like terms. Then add the coefficients	Group like terms. Then add the coefficients.		
	add the coerricients	Then add the countration.		
Demonstrate				
the math	$-7.1\pi - 180\pi + 5800$	(-7.1x2-180x+5800)+(21x2-140x+1700)		
	+ 21x2-140 x+1900	(-7.17 + 212)+(-180 + -140x)+(5800+1900)		
	(13.92 ³ -320x+7700)	(3.9x2-320x+7700)		
	Remem	ber like terms are the		
	* 1010	variables @ the same		
Check your	Same	A ille terms on bettely !:		
preferred	to power	! (Like terms can be +T- x +		
method	10. Linlike	terms can only be x/+)		
ca (olo hert)				
Solve the Got It? #4. Write the problem, show your work as you solve, and circle your answer.				
$(-12x^{3}+106x^{2}-241x+4477)+(14x^{2}-14x+1545)$				
(-12x3+120x2-255x+6022)				

Finally, ensure you can explain this concept to your fellow group members. Think about how you can demonstrate the addition of polynomials. Be sure to include both methods. Do you think there are any misconceptions that should be noted? What should students look out for? Signs Can you come up with a trick to remember a procedure?

8.1

Subtracting Polynomials

Read through "Problem 5: Subtracting Polynomials" on Page 489 of your textbook. What are the two polynomials given? Write below.

x 3-3x2+5x and 7x3+5x2-12

There are two methods provided to perform subtraction of polynomials. Demonstrate how to use each method.

Method 1	Method 2			
Explain in subtract vertically by lining up like terms.	Subtract horizontally by distributing the			
words lining UP like terms.	by distributing the			
There add the opposite of	negative. There combine			
each term in the	like terms.			
Demonstrate lach term in the the math polynomia (being subtrac				
the math polynorm and	13, 2 - 1 (73,52 /)			
$x^{3} - 3x^{2} + 5x$	$(\chi^3 - 3\chi^2 + 5\chi) - (7\chi^3 + 5\chi^2 - 12)$			
	$(\chi^3 - 3\chi^2 + 5\chi - 7\chi^3 + 5\chi^2 - 12)$			
$-(7x^{3}+5x^{2}-R)$				
	(-6x 3-8x 2+5x+12)			
13 2×215×	-6x-0x +3 x 1 2			
$7 \chi^{3} - 3\chi^{2} + 5\chi + 12$				
-1/8 -5/				
Check your (-6x3-8x7+5x+12)	WITAL AUG			
preferred	TWAICH THE			
method				
	(IISANS -			
c I I C I I 2 45 Matter the median about your work	as you solve and sindely our arswer			
Solve the Got It? #5. Write the problem, show your work	as you solve, and circle your answer.			
$(-4m^3 - m + 9) - (4m^2 + 1)$				
$-4m^{3}-m+9-4m^{2}-m^{3}$	+12			
$(-4m^3 - 4m^2 - 2m^3)$	+21)			
Finally, ensure you can explain this concept to your fello	w group members. Think about how			
you can demonstrate the addition of polynomials. Be su	e to include both methods. Do you			
think there are any misconceptions that should be noted	? What should students look out for?			
Can you come up with a trick to remember a procedure?				
	<u> </u>			
	Culture a magating			
* Foraetting to a	istribute a require or the			
+ Think a whatin	e positure turn and			
A minking a ragant	istribute a negative e « positive term are the same			

Name		Class	Date		
0 1	Practice	1 1 1	Fo	rm G	
8- I	Adding and Subtracti	ng Polynomials	7 92		
Find the degree of each monomial.					
1. $2b^2c^2$	2. 5 <i>x</i>	3. $7y^5$	4. 19 <i>ab</i>		
5 . 12	6. $\frac{1}{2}z^2$	7. t	8. 4 <i>d</i> ⁴ <i>e</i>		
Simplify.					
9. $2a^{3}b + 4a^{3}b$	10. $5x^3 - $	$4x^3$	11. $3m^6n^3 - 5m^6n^3$		
12. –6 <i>ab</i> + 3 <i>ab</i>	13. $4c^2d^6$	$-7c^2d^6$	14. $315x^2 - 30x^2$		
Write each polynomial in standard form. Then name each polynomial based on its degree and number of terms.					
15. $15x - x^3 + 3$	16. 5 <i>x</i> + 2	$2x^2 - x + 3x^4$	17. $9x^3$		
18. $7b^2 + 4b$	19. $-3x^2$	+ 11 + 10x	20. $12t^2 + 1 - 3x + 8 - $	2 <i>x</i>	
Simplify.					
21. 8 <i>z</i> - 12	22. 9.		23. $6j^2 - 2j + 5$		
+ 6z + 9	- + 43	$c^{3} + 7$	$+ 3j^2 + 4j - 6$		
24. $(3k^2 + 5) +$	$(16x^2 + 7)$	25. $(g^4 - 4g^2 + 1)$	$(1) + (-g^3 + 8g)$		

26. A local deli kept track of the sandwiches it sold for three months. The polynomials below model the number of sandwiches sold, where *s* represents days.

Ham and Cheese: $4s^3 - 28s^2 + 33s + 250$ Pastrami: $-7.4s^2 + 32s + 180$

Write a polynomial that models the total number of these sandwiches that were sold.

Name		Class		Date
0.4	Practice (contin	nued)		Form G
8-1	Adding and Subtr	acting Polynomials		
Simplify.				
27. 11 <i>n</i> -	- 4 28.	$7x^4 + 9$	29.	$3d^2 + 8d - 2$
-(5n +	+ 2)	$-(8x^4+2)$		$-(2d^2-7d+6)$
30. $(28e^3 + 3e^2)$	$(19e^3 + e^2)$	31. (-12 <i>h</i> ⁴ +	h) – (–6h ⁴	$+3h^2-4h$)

32. A small town wants to compare the number of students enrolled in public and private schools. The polynomials below show the enrollment for each:

Public School: $-19c^2 + 980c + 48,989$ Private School: 40c + 4046

Write a polynomial for how many more students are enrolled in public school than private school.

Simplify. Write each answer in standard form.

33. $(3a^2 + a + 5) - (2a - 5)$ **34.** $(6d - 10d^3 + 3d^2) - (5d^3 + 3d - 4)$ **35.** $(-4s^3 + 2s - 3) + (-2s^2 + s + 7)$ **36.** $(8p^3 - 6p + 2p^2) + (9p^2 - 5p - 11)$

- **37.** The fence around a quadrilateral-shaped pasture is $3a^2 + 15a + 9$ long. Three sides of the fence have the following lengths: 5a, 10a 2, $a^2 7$. What is the length of the fourth side of the fence?
- **38. Error Analysis** Describe and correct the error in simplifying the sum shown at the right.
- **39. Open-Ended** Write three different examples of the sum of a quadratic trinomial and a cubic monomial.

$$6x^{3} + 4x - 10$$

+ (-3x² + 2x + 8)
$$3x^{3} + 6x - 2$$

Prentice Hall Gold Algebra 1 • Teaching Resources Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Write each polynomial in standard form. Then name each polynomial based on its degree and number of terms.

15. $15x - x^3 + 3$ -x ³ + 15x + 3; cubic	16. $5x + 2x^2 - x + 3x^4$ $3x^4 + 2x^2 + 4x$; fourth	17. $9x^3$ 9x ³ ; cubic monomial
trinomial 18. $7b^2 + 4b$	degree trinomial 19. $-3x^2 + 11 + 10x$	20. $12t^2 + 1 - 3x + 8 - 2x$
7b ² + 4b; quadratic binomial	$-3x^2 + 10x + 11;$ quadratic trinomial	$12t^2 - 5x + 9;$ quadratic trinomial
Simplify.		
8z - 12	22. $9x^3 + 3$ + $4x^3 + 7$	$6j^2 - 2j + 5 + 3j^2 + 4j - 6$
21. $8z - 12$ + 6z + 9	22. $+ 4x^3 + 7$	23. $+3j^2 + 4j - 6$
14z - 3	$-13x^3 + 10$	$9j^2 + 2j - 1$
24. $(3k^2 + 5) + (16x^2 + 7)$	25. $(g^4 - 4g^2)$	$(-g^3 + 8g)$
$3k^2 + 16x^2 + 12$	$g^4 - g^3 -$	$-4g^2 + 8g + 11$

26. A local deli kept track of the sandwiches it sold for three months. The polynomials below model the number of sandwiches sold, where *s* represents days.

Ham and Cheese: $4s^3 - 28s^2 + 33s + 250$ Pastrami: $-7.4s^2 + 32s + 180$

Write a polynomial that models the total number of these sandwiches that were sold. $4s^3 = 35.4s^2 + 65s + 430$

Prentice Hall Gold Algebra 1 • Teaching Resources Copyright © by Pearson Education, Inc., or Its affillates. All Rights Reserved.

Class

Date

Form G

8-1 Practice (continued) Adding and Subtracting Polynomials

Simplify.

27.
$$\frac{11n - 4}{-(5n + 2)}$$
6n - 6
28.
$$\frac{7x^4 + 9}{-(8x^4 + 2)}$$
7.
$$\frac{3d^2 + 8d - 2}{-(2d^2 - 7d + 6)}$$
7.
$$\frac{7x^4 + 9}{-(2d^2 - 7d + 6)}$$
7.
$$\frac{7x^4 + 9$$

32. A small town wants to compare the number of students enrolled in public and private schools. The polynomials below show the enrollment for each:

Public School: $-19c^2 + 980c + 48,989$ Private School: 40c + 4046

Write a polynomial for how many more students are enrolled in public school than private school. $-19c^2 + 940c + 44,943$

Simplify. Write each answer in standard form.

- **33.** $(3a^2 + a + 5) (2a 5)$ $3a^2 - a + 10$
- **35.** $(-4s^3 + 2s 3) + (-2s^2 + s + 7)$ $-4s^3 - 2s^2 + 3s + 4$

34.
$$(6d - 10d^3 + 3d^2) - (5d^3 + 3d - 4)$$

-15d³ + 3d² + 3d + 4
36. $(8p^3 - 6p + 2p^2) + (9p^2 - 5p - 11)$
 $8p^3 + 11p^2 - 11p - 11$

10a - 2

5a

37. The fence around a quadrilateral-shaped pasture is
$$3a^2 + 15a + 9$$
 long. Three sides of the fence have the following lengths: $5a$, $10a - 2$, $a^2 - 7$. What is the length of the fourth side of the fence?

 $2a^2 + 18$

- **38. Error Analysis** Describe and correct the error in simplifying the sum shown at the right. two unlike terms, $6x^3$ and $-3x^2$, were added; $6x^3 - 3x^2 + 6x - 2$
- **39. Open-Ended** Write three different examples of the sum of a quadratic trinomial and a cubic monomial.

Answers may vary. Sample: $(x^2 + 2x + 1) + x^3$; $(2x^2 + 5x + 6) + 3x^3$; $(r^2 + r + 1) + 8r^3$

Prentice Hall Gold Algebra 1 • Teaching Resources Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.