#### Section 1 Stars

### **Stars and Galaxies**

| A. | Patterns of stars—              | _                                                   |
|----|---------------------------------|-----------------------------------------------------|
|    | 1. Ancient cultures used        | or everyday items to name constellations            |
|    | 2. Modern astronomy studies     | _ constellations                                    |
|    | 3. Some constellations are not  | all year because Earth revolves around the Sun      |
|    | <b>4.</b> in the n              | orthern sky appear to circle around Polaris and are |
|    | visible all year                | · v                                                 |
| В. | Star                            | *                                                   |
|    | 1measure of the                 | amount of light a star actually gives off           |
|    | 2measure of the                 | amount of a star's light received on Earth          |
| C. | Space                           |                                                     |
|    | 1. Astronomers measure a star's |                                                     |
| ٠. | two different angles            |                                                     |
|    | 2. Distance is measured in      | the distance light travels in a year                |
| D. | Star                            |                                                     |
|    | 1. Color indicates              |                                                     |
| 13 | a. Hot stars are                |                                                     |
|    | b. Cool stars look              |                                                     |
| è  | c stars like the Sun are medium | temperature                                         |

and \_\_\_\_\_\_ of the star's gases

Section 2 The Sun

A. Sun's \_\_\_\_\_\_energy created in the core moves outward through the radiation zone and the convection zone and into the Sun's atmosphere

2. A spectroscope breaks the visible light from a star into a \_\_\_\_\_

**b.** Spectrum gives the \_\_\_\_\_\_, \_

a. Spectrum indicates \_\_\_\_\_\_ in the star's atmosphere

**B.** Sun's \_\_\_\_\_ 1. \_\_\_\_\_\_\_lowest layer gives off light and is about 6,000 K 2. \_\_\_\_\_\_ is the next layer about 2000 km above the photosphere 3. Extending millions of km into space, the 2 million K \_\_\_\_\_\_ releases charged particles as solar wind C. Surface \_\_\_\_\_ 1. \_\_\_\_\_\_dark areas cooler than their surroundings a. \_\_\_\_\_\_ features which come and go over days, weeks, or months b. Increase and decrease in a 10 to 11 year pattern called \_\_\_\_\_ cycle 2. Sunspots are related to \_\_\_\_\_ a. Magnetic fields may cause \_\_\_\_\_\_huge, arching gas columns b. Violent eruptions near a sunspot are called \_\_\_\_\_ 3. Bright \_\_\_\_\_ (CMSs) appear as a halo around the Sun when emitted in the Earth's direction a. Highly charged \_\_\_\_\_ can disrupt radio signals b. Near Earth's polar areas solar wind material can create light called an \_\_\_\_\_ D. Sun is mostly \_\_\_\_\_ 1. \_\_\_\_-aged star 2. Typical \_\_\_\_\_ with yellow light 3. Unusual—Sun is \_\_\_\_\_\_ of a multiple star system or cluster **Evolution of Stars** Section 3 A. Classifying stars—Ejnar Hertzsprung and Henry Russell \_\_\_\_\_\_ stars by temperature and absolute magnitude in a H-R diagram a. Upper left—hot, \_\_\_\_\_, bright stars b. Lower right—\_\_\_, red, dim stars c. Middle—average \_\_\_\_\_\_ stars like the Sun

## Note-taking Worksheet (continued)

| 3. |    | of hydrogen occurs in star cores releasing huge amounts of energy               |
|----|----|---------------------------------------------------------------------------------|
| С. | _  | of stars                                                                        |
|    | 1. | A contracts and breaks apart from the instability caused by gravity             |
|    |    | a in each nebula chunk increase as particles move closer together               |
|    |    | <b>b.</b> At 10 million K begins and energy from a new star radiates into space |
|    | 2. | The new main sequence star pressure from fusion heat with gravity               |
|    |    | a. Balance is lost when core hydrogen fuel is                                   |
|    |    | b. Core contracts and heats up causing outer layers to and cool                 |
|    |    | c. Star becomes a as it expands and outer layers cool                           |
|    |    | d. Helium nuclei fuse to form core of                                           |
|    | 3. | A forms from the giant star                                                     |
|    |    | a. Helium is exhausted and outer layers of giant escape into space              |
|    |    | b. Core contracts into hot, dense, small star                                   |
|    | 4. | In massive stars fusion causes higher temperatures and greater expansion        |
|    |    | into a                                                                          |
|    |    | a. Eventually fusion stops as iron is formed                                    |
|    |    | b. The core crashes inward causing the outer part to explode as an incredibly   |
|    |    | bright                                                                          |
|    | 5. | The collapsed core of a supernova may form a of extremely high                  |
|    |    | density                                                                         |
|    | 6. | A tremendously big supernova core can collapse to a point with no volume        |
|    |    | forming a                                                                       |
|    |    | a is so strong not even light can escápe                                        |
|    |    | b. Beyond a black hole's gravity operates as it would before the                |
|    |    | mass collapsed                                                                  |
|    | 7. | Matter emitted by a star over its life time is recycled and can become part of  |
|    |    |                                                                                 |



a new

Copyright @ Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.

# Note-taking Worksheet (continued)

### Section 4 Galaxies and the Universe

| Α.       |    | gravity holds together a large collection of stars, gas, and dust                              |
|----------|----|------------------------------------------------------------------------------------------------|
|          |    | Earth galaxy is Milky Way which is part of a galaxy cluster named the                          |
|          |    |                                                                                                |
|          |    | stars and gas in a central bar                                                                 |
|          | 3. | —large, three-dimensional ellipses; most common shape                                          |
|          | 4. | —smaller, less common galaxies with various different shapes                                   |
| В.       | Th | e Milky Way Galaxy—usually classified as a                                                     |
|          | 1. | Contains more than 200 stars                                                                   |
|          | 2. | About 100,000 light-years                                                                      |
| ×        | 3. | Sun orbits galaxy's core every 240 million years                                               |
| C.       | Th | neorics on the of the universe                                                                 |
|          |    | universe has always existed just as it is now                                                  |
|          |    | ——universe expands and contracts repeatedly over time                                          |
| D        |    | niverse is                                                                                     |
| <b>D</b> |    | light changes as it moves toward or away from an object                                        |
|          |    | a Starlight moving toward Earth shifts to end of spectrum                                      |
| 4        |    | b. Starlight moving away from Earth shifts to end of spectrum                                  |
|          | 2  | All galaxies outside the Local Group indicate a red shift in their spectra indicating they are |
|          | 2. | moving Earth                                                                                   |
| 10       |    |                                                                                                |
| E.       |    | —holds that universe began 12 to 15 million years ago with huge explosion                      |
|          |    | at caused expansion everywhere at the same time                                                |
|          | 1. | Galaxies more than 10 light-years away give information about a young                          |
|          |    | universe                                                                                       |
|          | 2. | The universe may eventually expanding and                                                      |
| 50       |    | begin                                                                                          |